

دانشگاه صنعتى اصفهان
دانشكده مهندسى حمل و نقل

برنامه ريزى عدد صحيح
Integer Programming
مدرس: مصمد تمنايى

باييز

When and how to use Integer Programming
 ?

\rightarrow If a practical problem has characteristics with types:
\checkmark Problems with discrete (not continuous) inputs or outputs
\checkmark Problems with logical conditions
\checkmark Problems with yes / no decisions
\checkmark...
\checkmark Discrete quantities
Variables to represent a quantity: People, cars, ...
\checkmark Variables for Decision
Usually in 0-1 (Binary) form
Decision Variables: usually in Greek form ($\delta, \gamma, \alpha, \ldots$)
Continuous Variables: usually in Latin form
\checkmark Indicator Variables (If- Then)
Usually in 0-1 (Binary) form
Example: (continuous variable $\mathrm{x}>=0$, binary variable δ)
$\left\{\begin{array}{l}\delta=1 \rightarrow x>0 \\ \delta=0 \rightarrow x=0\end{array}\right\} \equiv\{\delta=1 \leftrightarrow x>0\}$ Constraints $\left\{\begin{array}{l}x-M \delta \leq 0 \\ x+M(1-\delta)>0\end{array}\right\}$

\checkmark Either-Or Constraints

A choice can be made between two constraints, so that only one must hold.
Either $3 x_{1}+2 x_{2} \leq 18$
Or $\quad x_{1}+4 x_{2} \leq 16$
How ? Auxiliary variable y (Binary)

$$
\left\{\begin{aligned}
3 x_{1}+2 x_{2} & \leq 18+M y \\
x_{1}+4 x_{2} & \leq 16+M(1-y)
\end{aligned}\right.
$$

This formulation guarantees that 1 of the original constraints must hold while the other is, in effect, eliminated.

$$
\left\{\begin{array}{c}
3 x_{1}+2 x_{2} \leq 18+M y_{1} \\
x_{1}+4 x_{2} \leq 16+M y_{2} \\
y_{1}+y_{2}=1
\end{array}\right.
$$

متحمل تمنا.يى
پثوهش عملياتى

\checkmark K out of N Constraints Must Hold

The overall model includes a set of N possible constraints, such that: only some K of them must hold $(\mathrm{K}<\mathrm{N})$.

$$
\begin{gathered}
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq d_{1} \\
f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq d_{2} \\
\ldots \\
f_{N}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq d_{N}
\end{gathered}
$$

Only K of N must hold

How ? Auxiliary variable $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{N}}$ (Binary)

$$
\left\{\begin{array}{c}
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq d_{1}+M y_{1} \\
f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq d_{2}+M y_{2} \\
\ldots \\
f_{N}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq d_{N}+M y_{N} \\
y_{l}+y_{2}+\ldots+y_{N}=N-K \\
y_{i} \text { binary }(i=1,2, \ldots, N)
\end{array}\right.
$$

\checkmark Functions with N Possible Values

A given function is required to take on any one of N given values.

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=d_{1} \text { or } d_{2}, \ldots, \text { or } d_{N}
$$

How ? Auxiliary variable $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{N}}$ (Binary)

$$
\left\{\begin{array}{l}
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=d_{1} y_{l}+d_{2} y_{2}+\ldots+d_{N} y_{N} \\
y_{l}+y_{2}+\ldots+y_{N}=1 \\
y_{i} \text { binary }(i=1,2, \ldots, N)
\end{array}\right.
$$

\checkmark The Fixed-Charge Problem

to incur a fixed charge or setup cost when undertaking an activity.

$$
f_{j}\left(x_{j}\right)=\left\{\begin{array}{ll}
k_{j}+c_{j} x_{j} & \text { if } x_{j}>0 \\
0 & \text { if } x_{j}=0
\end{array} \circ \bigcirc \bigcirc \begin{array}{l}
x_{j}=\text { level of activity } j\left(x_{j} \geq 0\right) \\
k_{j}=\text { setup cost } \\
c_{j}=\text { cost for each incremental unit }
\end{array}\right.
$$

Suppose: there are n activities
$\operatorname{Minimize} Z=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\ldots+f_{n}\left(x_{n}\right)$
How ? Auxiliary variable $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}$ (Binary)
Objective Function: Minimize $Z=\sum_{j=1}^{n}\left(c_{j} x_{j}+k_{j} y_{j}\right)$
New constraints: y_{j} can be viewed as contingent decisions:

$$
x_{j} \leq M \cdot y_{j} \quad \forall j=1,2, \ldots, n
$$

محمد تمنـايى

Some Uses of Binary Variables

Integer Programming

\checkmark Binary Representation of Integer Variables

To change a pure IP problem to BIP problem, aimed at using an efficient BIP algorithms
bounds on an integer variable x are: $0 \leq x \leq u$
N is defined as the integer such that: $2^{\mathrm{N}} \leq u \leq 2^{\mathrm{N}+1}$
How ? binary representation of x is: $x=\sum_{i=1}^{N} 2^{i} y_{i} \longrightarrow \longrightarrow$ Binary

$$
\left\{\begin{array}{lll}
x_{1} \leq 5 & \mathrm{u}=5 \text { for } \mathrm{x}_{1} \\
2 x_{1}+3 x_{2} \leq 30 & \mathrm{u}=10 \text { for } \mathrm{x}_{2}
\end{array} \quad \begin{array}{l}
x_{1}=y_{0}+2 y_{1}+4 y_{2} \\
x_{2}=y_{3}+2 y_{4}+4 y_{5}+8 y_{6}
\end{array}\right.
$$

$$
y_{0}+2 y_{1}+4 y_{2} \leq 5
$$

$$
2 y_{0}+4 y_{1}+8 y_{2}+3 y_{3}+6 y_{4}+12 y_{5}+24 y_{6} \leq 30
$$

$$
y_{i} \in\{0,1\} \text { for } \mathrm{i}=1,2, \ldots
$$

Formulation Example 1

Making Choices When Decision Variables Are Continuous

We want to produce 3 possible new products.

* We have 2 plants

	Production Time Used for Each Unit Produced			Production Time Available per Week
	Product 1	Product 2	Product 3	
3 hours	4 hours	2 hours	40 hours	
Unit profit	5	6 hours	7	3

Restriction 1:
From 3 possible new products, at most 2 should be chosen to be produced.
Restriction 2:
Just 1 of 2 plants should be chosen to be the sole producer of new product

Variables

x_{1}, x_{2}, x_{3} production rates of products

Mathematical Model

Maximize $Z=5 x_{1}+7 x_{2}+3 x_{3}$
Subject to: $3 x_{1}+4 x_{2}+2 x_{3} \leq 30$

$$
\begin{array}{rlrl}
4 x_{1}+6 x_{2}+2 x_{3} & \leq 40 & & \text { Restriction 1? } \\
x_{1} & & \leq 7 & \\
x_{2} & & \leq 5 & \\
& & \text { Restriction 2? } \\
& x_{3} & \leq 9 &
\end{array}
$$

$x_{1}, x_{2}, x_{3} \geq 0$

Formulation Example 1

Restriction 1:

From 3 possible new products, at most 2 should be chosen to be produced.
The number of strictly positiye decision variables (x1, x2, x3) must be ≤ 2.

How?

3 auxiliary binary variables $\left(y_{1}, y_{2}, y_{3}\right)$

$$
y_{j}= \begin{cases}1 & \text { if } \left.x_{j}>0 \text { can hold (can produce product } j\right) \\ 0 & \text { if } \left.x_{j}=0 \text { must hold (cannot produce product } j\right),\end{cases}
$$

$$
\begin{aligned}
& x_{1} \leq M y_{1} \\
& x_{2} \leq M y_{2} \\
& x_{3} \leq M y_{3} \\
& y_{1}+y_{2}+y_{3} \leq 2 \\
& y_{i} \text { binary (for } j 1,2,3 \text {) }
\end{aligned}
$$

Formulation Example 1

Restriction 2:

Just 1 of 2 plants should be chosen to be the sole producer of new products.

Either $3 x_{1}+4 x_{2}+2 x_{3} \leq 30$
or $\quad 4 x_{1}+6 x_{2}+2 x_{3} \leq 40$

How?

1 auxiliary binary variables $\left(y_{4}\right)$
$y_{4}= \begin{cases}1 & \text { if } 4 x_{1}+6 x_{2}+2 x_{3} \leq 40 \text { must hold (choose Plant 2) } \\ 0 & \text { if } 3 x_{1}+4 x_{2}+2 x_{3} \leq 30 \text { must hold (choose Plant 1) }\end{cases}$

$$
\begin{aligned}
& 3 x_{1}+4 x_{2}+2 x_{3} \leq 30+M y_{4} \\
& 4 x_{1}+6 x_{2}+2 x_{3} \leq 40+M\left(1-y_{4}\right) \\
& y_{4} \text { binary }
\end{aligned}
$$

Complete Model

$$
\text { Maximize } \quad Z=5 x_{1}+7 x_{2}+3 x_{3},
$$

subject to

$$
\begin{aligned}
x_{1} & \leq 7 \\
x_{2} & \leq 5 \\
x_{3} & \leq 9 \\
x_{1}-M y_{1} & \leq 0 \\
x_{2}-M y_{2} & \leq 0 \\
x_{3}-M y_{3} & \leq 0 \\
y_{1}+y_{2}+y_{3} & \leq 2 \\
3 x_{1}+4 x_{2}+2 x_{3}-M y_{4} & \leq 30 \\
4 x_{1}+6 x_{2}+2 x_{3}+M y_{4} & \leq 40+M
\end{aligned}
$$

and

$$
x_{1} \geq 0, \quad x_{2} \geq 0, \quad x_{3} \geq 0
$$

$$
y_{j} \text { is binary, } \quad \text { for } j=1,2,3,4 .
$$

Solving IP Problems

* IP problems have far fewer solutions rather than LP problems.
* IP problems with bounded feasible region: finite number of solutions.

2 fallacies:

Fallacy 1 (Number of solutions):

having a finite number of feasible solutions ensures: problem is readily solvable.

Answer:

Finite numbers can be astronomically large.
BIP problem with n variables: 2^{n} solutions to be considered (of course, some can be discarded due to violating constraints).
Each time n is increased by 1 , the number of solutions is doubled.
$>\mathrm{n}=10$: about 1,000 solutions $(1,024)$
$>\mathrm{n}=20$: about $1,000,000$ solutions
$>\mathrm{n}=30$: about $1,000,000,000$ solutions

Solving IP Problems

Fallacy 2:

removing some feasible solutions (non-integer ones) from a LP problem makes it easier to solve.

Answer:

* To the contrary, it is only because all these feasible solutions are there that the guarantee usually can be given that there will be a corner-point feasible (CPF) solution that is optimal for the overall problem.
* This guarantee is the key to the remarkable efficiency of the simplex method.

Solving IP Problems

For any given IP problem:

The corresponding LP problem commonly is referred to as its $\boldsymbol{L P}$ relaxation.

Special situation

solving IP problem is no more difficult than solving its LP relaxation

When?

when the optimal solution of LP relaxation is integer. this is optimal for the IP problem as well, because it is the best solution among all the feasible solutions for the LP relaxation, which includes all the feasible solutions for the IP problem.

Example:

Special types of IP problems:
minimum cost flow problem (with integer parameters)
$+$
Its children (transportation, assignment, shortest-path, maximum flow problems).

Solving IP Problems

Integer Programming

determinants of computational difficulty of LP problem:

number of (functional) constraints is much more important than number of variables.

3 determinants of computational difficulty of IP problem:

(1) Number of integer variables
(2) Whether integer variables are binary or general integer variables
(3) Any special structure in the problem

* Number of constraints is strictly secondary to the other above factors!
* increasing number of constraints may decrease computation time because number of feasible solutions has been reduced.

determinants of computational difficulty of MIP problem:

Number of integer variables (rather than total number of variables)

Solving IP Problems

Rounding?

when tempting to solve LP relaxation and then rounding noninteger values to integers in the resulting solution.

2 pitfalls

Pitfall 1:
Optimal LP solution is not necessarily feasible after rounded.

Pitfall 2:

No guarantee that the rounded solution will be the optimal integer solution.

Solving IP Problems

Integer Programming

Pitfall 1:

Optimal LP solution is not necessarily feasible after rounded.

Maximize $\mathbf{Z}=\mathbf{x}_{\mathbf{2}}$
Subject to:

$$
\begin{aligned}
-x_{1}+x_{2} & \leq \frac{1}{2} \\
x_{1}+x_{2} & \leq 3 \frac{1}{2}
\end{aligned}
$$

and

$$
x_{1} \geq 0, \quad x_{2} \geq 0
$$

x_{1}, x_{2} are integers.

Solving IP Problems

Pitfall 2:

No guarantee that the rounded solution will be the optimal integer solu ion.

$$
\begin{aligned}
& \text { Maximize } \mathbf{Z}=\mathbf{x}_{\mathbf{1}}+ \\
& \text { Subject to: } \\
& \qquad \begin{aligned}
x_{1}+10 x_{2} & \leq 20 \\
x_{1} & \leq 2
\end{aligned}
\end{aligned}
$$

and

$x_{1} \geq 0, \quad x_{2} \geq 0$ x_{1}, x_{2} are integers.

B\&B for BIP Problems

Branch-and-Bound Algorithm

A kind of enumeration procedure for finding an optimal solution.
It is imperative that any enumeration procedure be cleverly structured so that only a tiny fraction of feasible solutions need be examined.
$\mathbf{3}$ basic steps of $\mathbf{B \& B}\left\{\begin{array}{l}\text { Branching } \\ \text { Bounding } \\ \text { Fathoming }\end{array}\right.$
Example: Maximize $Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}$,
subject to
(1) $6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10$
$\begin{aligned} \text { (2) } & x_{3}+x_{4}\end{aligned} \leq 1$
and

مـحمل تمناییى
(5) $\quad x_{j}$ is binary, \quad for $j=1,2,3,4$.

1) Branching

Dividing into smaller subproblems.

(binary variables)

the most straightforward way to partition set of feasible solutions into subsets: to fix the value of one of the variables (say, x1): 0 or 1

Subproblem 1: Fix $x_{1}=0$
Maximize $Z=5 x_{2}+6 x_{3}+4 x_{4}$,
subject to
(1)
(2)
(3)
(4)
(5) $\quad x_{j}$ is binary, \quad for $j=2,3,4$.

Subproblem 2: Fix $x_{1}=1$

$$
\text { Maximize } \quad Z=9+5 x_{2}+6 x_{3}+4 x_{4}
$$ subject to

(5) $\quad x_{j}$ is binary, \quad for $j=2,3,4$.

B\&B for BIP Problems

1) Branching

B\&B for BIP Problems

2) Bounding

For each of these subproblems, we now need to obtain a bound on how good its best feasible solution can be.

Standard way of Bounding:

To solve a simpler relaxation of the subproblem.

* In most cases, relaxation by deleting ("relaxing") one set of constraints that had made the problem difficult to solve.
* For IP problems: integrality constraints
* Most widely used relaxation for IP: "LP relaxation"

Maximize $\quad Z=9 x_{1}+5 x_{2}+6 x_{3}+4 x_{4}$,
for the example, relaxation for constraint (5):

$$
\begin{equation*}
0 \leq x_{j} \leq 1, \quad \text { for } j=1,2,3,4 \tag{5}
\end{equation*}
$$

subject to
(1) $6 x_{1}+3 x_{2}+5 x_{3}+2 x_{4} \leq 10$
(2) $\quad x_{3}+x_{4} \leq 1$
$\begin{array}{ll}\text { (3) }-x_{1} \\ \text { (4) } & +x_{3} \leq 0 \\ -x_{2}\end{array}$
and
(5) $\quad x_{j}$ is binary, \quad for $j=1,2,3,4$.

B\&B for BIP Problems

2) Bounding

Using the simplex method to quickly solve this LP relaxation yields its optimal solution:

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\frac{5}{6}, 1,0,1\right), \quad \text { with } Z=16 \frac{1}{2} .
$$

Bound for whole problem: $\mathrm{Z} \leq 16$
obtain the bounds for the two subproblems:
Subproblem 1: at $x_{1}=0$,
this can be conveniently expressed in its LP relaxation by adding the constraint that
$x_{1} \leq 0$
since combining with $0 \leq x_{1} \leq 1$ forces $x_{1}=0$.
Subproblem 1: at $x_{1}=1$,
this can be conveniently expressed in its LP relaxation by adding the constraint th
$x_{1} \geq 1$
since combining with $0 \leq x_{1} \leq 1$ forces $x_{1}=1$.

B\&B for BIP Problems

Integer Programming

3) Fathoming

F. Hillier, G. J. Lieberman, "Introduction to Operations Research", Ninth Edition, 2010.

