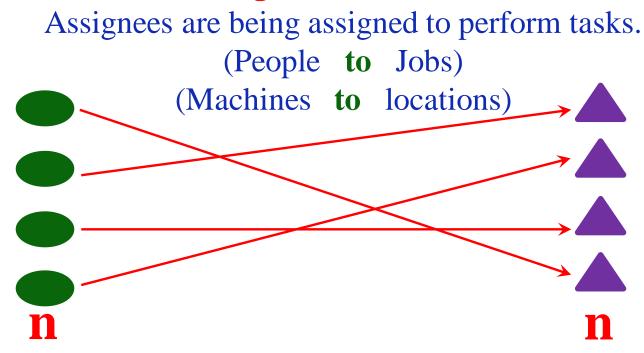


مسئله واگذاری

Assignment Problem


مدرس: محمد تمنايي

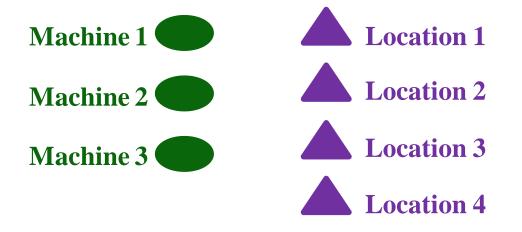
پاييز ١٣٩۴

Definition

Assignment Problem

Assignment Problem:

Assumptions:


- 1. Number of assignees = Number of tasks
- 2. Each assignee is to be assigned to exactly 1 task.
- 3. Each task is to be performed by exactly 1 assignee.
- 4. Cost C_{ij} = assignee i performing task j.
- 5. Objective: how to assign all to minimize total cost. محمد تمنايي

Example: JOB SHOP COMPANY

Assigning 3 new machines to 4 available locations in the shop

Location 2 is not considered suitable for Machine 2

How to formulate it as an assignment problem?

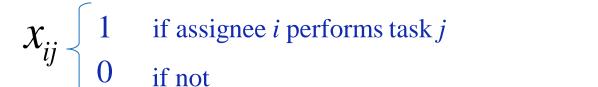
A dummy machine for extra location

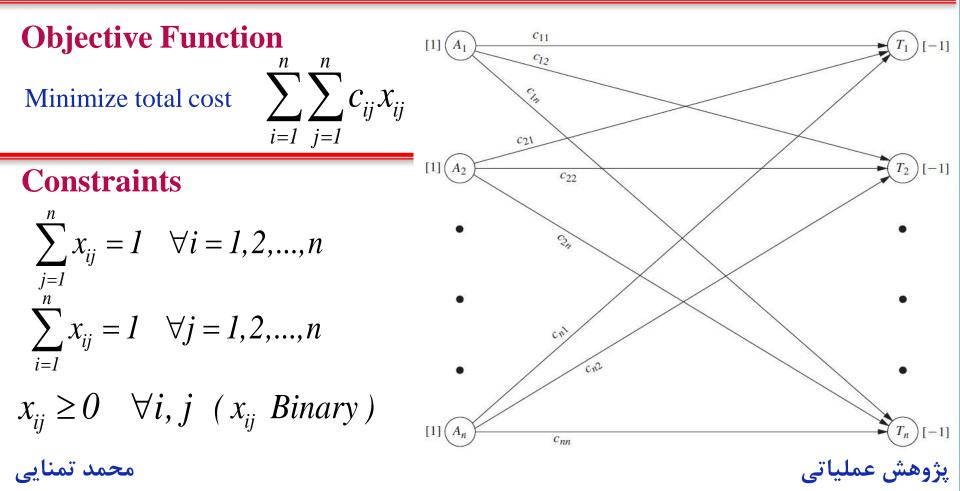
How to prevent assignment of Machine 2 to location 2? A large cost M

محمد تمنايى

Materials-handling cost data (\$) for Job Shop Co.

			Loca	tion	
		1	2	3	4
	1	13	16	12	11
Machine	2	15		13	20
	3	5	7	10	6


Cost table for the Job Shop Co. assignment problem


				sk ntion)	
		1	2	3	4
	1	13	16	12	11
Assignee	2	15	М	13	20
(Machine)	3	5	7	10	6
	4(D)	0	0	0	0

Assignment Problem

Variables

Mathematical Model

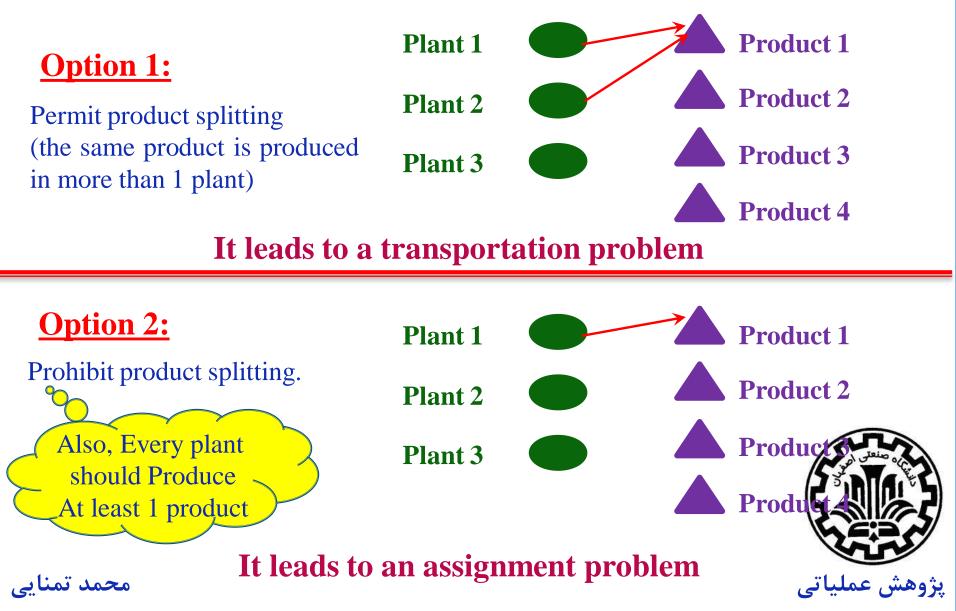
 $\begin{array}{l} x_{ij} \geq 0 \quad \forall i, j \\ (x_{ij} \ Binary) \ LP \ problem \end{array}$?

Integer Solutions Property (in ransportation problem) model:

s_i and d_j are integers (= 1) every BF solution (including optimal one) is "integer solution"

```
Deleting "Binary restriction":
```

BF solutions automatically will satisfy the binary restriction


Example: Assigning Products to Plants

Production of 4 products, using 3plants that currently have excess production capacity.

						24			
			Unit Cost (\$) for Product						
		1	2	3	4	Capacity Available			
	1	41	27	28	24	75			
Plant	23	40 37	29 30	27	23 21	75 45			
Production	rate	20	30	30	40				
Required	Productio	n per day	Plan	t 2 cannot pro	duce produc	ct 3			
		Plant 1		Produc	t 1				
		Plant 2		Produc	t 2	STATE OF			
		Plant 3		Produc	t 3				
عمد تمنایی	20			Produc	t 4	پژوهش عملیاتی			

Example 2

Two kinds of options are available:

Option 1 (Permit product splitting)

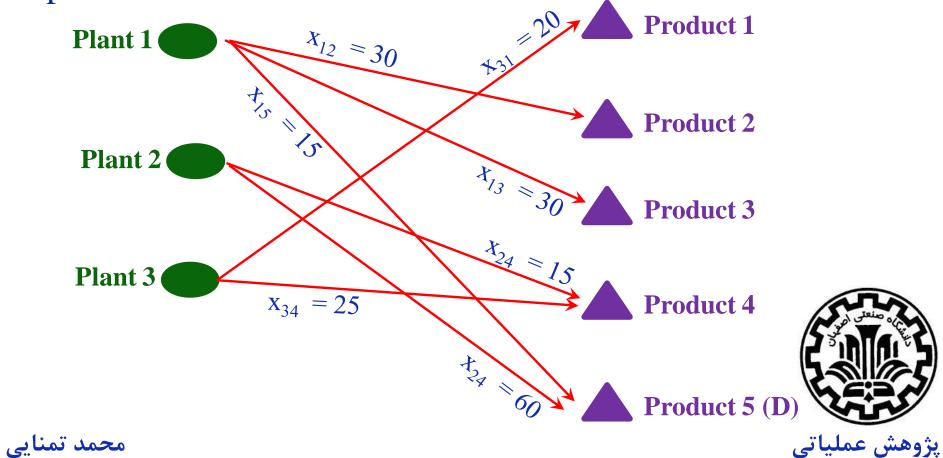
			Conscitu				
		1	2	3	4	- Capacity Available	
	1	41	27	28	24	75	
Plant	2	40	29		23	75	
	3	37	30	27	21	45	
Production	rate	20	30	30	40		

Total capacity (75 + 75 + 45 = 195)

A dummy destination with demand of 75 is needed

Total required production (20 + 30 + 30 + 40 = 120)

			Cost p	er Unit Dis	tributed		
			Dest	ination (Pr	oduct)		
		1	2	3	4	5(D)	Supply
	1	41	27	28	24	0	75
Source	2	40	29	M	23	0	75
(Plant)	3	37	30	27	21	0	45
Demand		20	30	30	40	75	


محمد تمنايى

Example 2

Option 1 (Permit product splitting)

Optimal Value: 3260 \$

Optimal Solution:

Assignment Problem

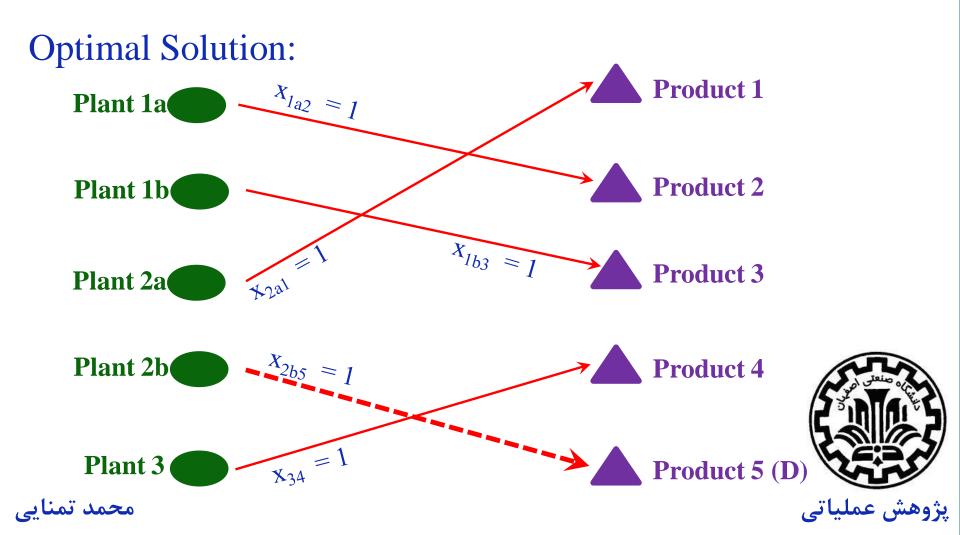
Option	a 2 (Pre	vent pro	duct spl	litting)			Also, Every plant should Produce
			Unit Cost (\$) for Product	:		At least 1 product
		1	2	3	4	- Capacity Available	
	1	41	27	28	24	75	-
Plant	2	40	29		23	75	
	3	37	30	27	21	45	
Production	rate	20	30	30	40		_

Assignment Problem: Plants to Products

- One of the plants will need to be assigned 2 products.
- Plant 3 cannot produce more than 1 product.
- Either Plant 1 or Plant 2 will produce 2 product.

Assigneestasks(n)(n)How to make assignment of an extra product possible?Plant 1 and Plant 2 each are split into two assigneesمحمد تمنایی

Option 2 (Prevent product splitting)


		U	Camaa	14				
		1	2	3	4		Capacity Available	
	1	41	27	28	24	75		
Plant	2	40	29		23	75		
	3	37	30	27	21	45		
Production ra	ate	20	30	30	40			
Assignr	nent Pr	oblem: I	Plants to]	Products		60 = 24	/ 40 /	
Assignr Cost		oblem: H	Plants to 2	Products Task (Proc	,)	
0		oblem: F	Plants to 2		luct)	4	5(D	
0				Task (Proc	luct))	
Cost	table	1	2	Task (Proc 3	luct) 9	4	5(D	
Cost	table	1 820	2 810	Task (Proc 3 840	fuct) 9	4 60	5(D 0	
	table	1 820 820	2 810 810	Task (Proc 3 840 840	fuct) 9 9 9	4 60 60	5(D 0 0	

(a choice of product 1, 2, 3, or 4)

Example 2

Option 2 (Prevent product splitting)

Optimal Value: 3290 \$

پژوهش عملیاتی

Option 2 (Prevent product splitting)

		-	_	-	-	
	A B	C	D	E	F	Solver Parameters
1	Better Products C	o. Produc	tion Planni	ng Probler	n (Option A	
2						Set Target Cell: TotalCost 🔣
3	Unit Cost	Product 1	Product 2	Product 3	Product 4	
4	Plant 1	\$41	\$27	\$28	\$24	Equal To: C Max @ Min C
5	Plant 2	\$40	\$29	-	\$23	- <u>By</u> Changing Cells:
6	Plant 3	\$37	\$30	\$27	\$21	by changing const
7						Assignment
8	Required Production	20	30	30	40	JASSIGNMENC
9						Subject to the Constraints
10						-Subject to the Constraints:
11	Cost (\$/day)	Product 1	Product 2	Product 3	Product 4	\$E\$20 = 0
12	Plant 1	\$820	\$810	\$840	\$960	
13	Plant 2	\$800	\$870		\$920	\$G\$19:\$G\$20 <= \$I\$19:\$I\$20
14	Plant 3	\$740	\$900	\$810	\$840	\$G\$21 = \$I\$21
15						TotalAssigned = Demand
16						
17						Total
18	Assignment	Product 1	Product 2	Product 3	Product 4	Assignments Supply
19	Plant 1	0	1	1	0	2 <= 2
20	Plant 2	1	0	0	0	1 <= 2
21	Plant 3	0	0	0	1	1 = 1
22	Total Assigned	1	1	1	1	
23		(=)	E	=	=	Total Cost
24	Demand	1	1	1	1	\$3,290

محمد تمنايى

Homework

Problem 8.3-8 Page 354

a), b), c),d) Specify the optimal solution using excel

F. Hillier, G. J. Lieberman, "Introduction to Operations Research", Ninth Edition, 2010.

